Source code for livvkit.components.numerics_tests.ismip

# coding=utf-8
# Copyright (c) 2015-2017, UT-BATTELLE, LLC
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

"""
Utilities to provide numerical verification for the ISMIP test cases
"""

import os

import numpy as np
import matplotlib.pyplot as plt

import livvkit
from livvkit.util.LIVVDict import LIVVDict
from livvkit import elements
from livvkit.util import functions


case_color = {'bench': '#d7191c',
              'test':  '#fc8d59'}

line_style = {'bench': 'o-',
              'test': '-'}

setup = None


[docs]def set_up(): global setup setup = functions.read_json(os.path.join(os.path.dirname(__file__), 'ismip.json')) for exp, size in [('ismip-hom-a', '005'), ('ismip-hom-c', '005'), ('ismip-hom-f', '000')]: recreate_file = os.path.join(livvkit.__path__[0], setup[exp]["data_dir"], setup[exp]['pattern'][0].replace('???', size)) setup[exp]['interp_points'] = \ np.genfromtxt(recreate_file, delimiter=',', missing_values='nan', usecols=(0,), unpack=True) if exp == 'ismip-hom-f': setup[exp]['interp_points'] = setup[exp]['interp_points']*100 - 50
[docs]def get_case_length(case): return str(int(case.split('-')[-1][1:])).zfill(3)
[docs]def run(config, analysis_data): case = config['name'] if case in ['ismip-hom-a', 'ismip-hom-c', 'ismip-hom-f']: coord = 'x_hat' else: coord = 'y_hat' lengths = list(set( [get_case_length(d) for d in analysis_data] )) plot_list = [] for p, pattern in enumerate(sorted(setup[case]['pattern'])): fig_label = pattern.split('_')[1] description = '' for l in sorted(lengths): plt.figure(figsize=(10, 8), dpi=150) plt.xlabel(setup[case]['xlabel'][p]) plt.ylabel(setup[case]['ylabel'][p]) if case in ['ismip-hom-a', 'ismip-hom-c']: plt.title(str(int(l))+' km') title = fig_label[0:-1]+'. '+fig_label[-1]+': '+str(int(l))+' km' else: plt.title('No-Slip Bed') title = fig_label[0:-2]+'. '+fig_label[-2:]+': No-Slip Bed' plot_file = os.path.join(config["plot_dir"], config['name']+'_'+fig_label+'_'+l+'.png') recreate_file = os.path.join( livvkit.__path__[0], setup[case]["data_dir"], pattern ).replace('???', l) axis, fs_amin, fs_amax, fs_mean, fs_std, ho_amin, ho_amax, ho_mean, ho_std = \ np.genfromtxt(recreate_file, delimiter=',', missing_values='nan', unpack=True) if case in ['ismip-hom-f']: axis = axis*100.0 - 50.0 plt.fill_between(axis, ho_amin, ho_amax, facecolor='green', alpha=0.5) plt.fill_between(axis, fs_amin, fs_amax, facecolor='blue', alpha=0.5) plt.plot(axis, fs_mean, 'b-', linewidth=2, label='Full stokes') plt.plot(axis, ho_mean, 'g-', linewidth=2, label='Higher order') analysis = {} for a in analysis_data: if int(l) == int(a.split('-')[-1][1:]): analysis[a] = analysis_data[a] for a in analysis: for model in sorted(analysis[a]): plt.plot(analysis[a][model][coord], analysis[a][model][config['plot_vars'][p]], line_style[model], color=case_color[model], linewidth=2, label=a+'-'+model) plt.legend(loc='best') plt.savefig(plot_file) plt.close() image = elements.Image(title, description, plot_file) plot_list.append(image) return elements.Gallery("Numerics Plots", plot_list)
[docs]def summarize_result(data, config): case = config['name'] summary = LIVVDict() lengths = list(set([get_case_length(d) for d in data])) for p, pattern in enumerate(sorted(setup[case]['pattern'])): for l in sorted(lengths): recreate_file = os.path.join( livvkit.__path__[0], setup[case]["data_dir"], pattern ).replace('???', l) axis, fs_amin, fs_amax, fs_mean, fs_std, ho_amin, ho_amax, ho_mean, ho_std = \ np.genfromtxt(recreate_file, delimiter=',', missing_values='nan', unpack=True) analysis = {} for a in data: if int(l) == int(a.split('-')[-1][1:]): analysis[a] = data[a] for a in analysis: for model in sorted(analysis[a]): if setup[case]['ylabel'][p].split(" ")[0].lower() == 'surface': percent_errors = np.divide(analysis[a][model][config['plot_vars'][p]] - ho_mean, ho_mean+1000) coefficient = np.divide(ho_std, ho_mean+1000) else: percent_errors = np.divide(analysis[a][model][config['plot_vars'][p]] - ho_mean, ho_mean) coefficient = np.divide(ho_std, ho_mean) label = a+' '+setup[case]['ylabel'][p].split(" ")[0] if model.lower() == 'bench': summary[label]['Bench mean % error'] = \ '{:3.2%}'.format(np.nanmean(percent_errors)) else: summary[label]['Test mean % error'] = \ '{:3.2%}'.format(np.nanmean(percent_errors)) summary[label]['Coefficient of variation'] = \ '{:3.2%}'.format(np.nanmean(coefficient)) return summary